Ultrafast Phase Transition via Catastrophic Phonon Collapse Driven by Plasmonic Hot-Electron Injection

2014 
Ultrafast photoinduced phase transitions could revolutionize data-storage and telecommunications technologies by modulating signals in integrated nanocircuits at terahertz speeds. In quantum phase-changing materials (PCMs), microscopic charge, lattice, and orbital degrees of freedom interact cooperatively to modify macroscopic electrical and optical properties. Although these interactions are well documented for bulk single crystals and thin films, little is known about the ultrafast dynamics of nanostructured PCMs when interfaced to another class of materials as in this case to active plasmonic elements. Here, we demonstrate how a mesh of gold nanoparticles, acting as a plasmonic photocathode, induces an ultrafast phase transition in nanostructured vanadium dioxide (VO2) when illuminated by a spectrally resonant femtosecond laser pulse. Hot electrons created by optical excitation of the surface-plasmon resonance in the gold nanomesh are injected ballistically across the Au/VO2 interface to induce a subpi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    112
    Citations
    NaN
    KQI
    []