Sulfurization of co-evaporated Cu2ZnSnSe4 thin film solar cells: The role of Na

2018 
Abstract The sulfurization of co-evaporated Cu 2 ZnSnSe 4 (CZTSe) thin films is studied. In this work, a relationship between the Na concentration and the further S incorporation in the CZTSe absorber layer is found. Na is added by a NaF precursor layer before CZTSe co-evaporation and/or by diffusion from the soda-lime glass s ubstrate. Higher Na concentrations result in bigger grain sizes, higher S/(S + Se) atomic ratios and photovoltaic devices with higher V OC, as investigated by SEM, GIXRD, Raman and I-V measurements. Results using an alternative substrate as ceramic verify the importance of the control of the Na content, which alters the carrier concentrations and elements distribution with much higher S and Na concentrations at the surface in this particular case. By using this methodology, it is possible to tune the kesterite band gap energy by the creation of S-gradient through the absorber thin film. This may provide a new approach for the control of Cu 2 ZnSn(S,Se) 4 growth and development of high efficiency kesterite solar cells. Efficiencies of 5.5% and 6.4% are obtained using ceramic and SLG substrates respectively (without antireflection coatings and without grids).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    16
    Citations
    NaN
    KQI
    []