language-icon Old Web
English
Sign In

Thin film solar cell

A thin-film solar cell is a second generation solar cell that is made by depositing one or more thin layers, or thin film (TF) of photovoltaic material on a substrate, such as glass, plastic or metal. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si). Film thickness varies from a few nanometers (nm) to tens of micrometers (µm), much thinner than thin-film's rival technology, the conventional, first-generation crystalline silicon solar cell (c-Si), that uses wafers of up to 200 µm thick. This allows thin film cells to be flexible, and lower in weight. It is used in building integrated photovoltaics and as semi-transparent, photovoltaic glazing material that can be laminated onto windows. Other commercial applications use rigid thin film solar panels (interleaved between two panes of glass) in some of the world's largest photovoltaic power stations. Thin-film technology has always been cheaper but less efficient than conventional c-Si technology. However, it has significantly improved over the years. The lab cell efficiency for CdTe and CIGS is now beyond 21 percent, outperforming multicrystalline silicon, the dominant material currently used in most solar PV systems.:23,24 Accelerated life testing of thin film modules under laboratory conditions measured a somewhat faster degradation compared to conventional PV, while a lifetime of 20 years or more is generally expected. Despite these enhancements, market-share of thin-film never reached more than 20 percent in the last two decades and has been declining in recent years to about 9 percent of worldwide photovoltaic installations in 2013.:18,19 Other thin-film technologies that are still in an early stage of ongoing research or with limited commercial availability are often classified as emerging or third generation photovoltaic cells and include organic, and dye-sensitized, as well as quantum dot, copper zinc tin sulfide, nanocrystal, micromorph, and perovskite solar cells. Thin film cells are well-known since the late 1970s, when solar calculators powered by a small strip of amorphous silicon appeared on the market. It is now available in very large modules used in sophisticated building-integrated installations and vehicle charging systems. Although thin-film technology was expected to make significant advances in the market and to surpass the dominating conventional crystalline silicon (c-Si) technology in the long-term, market-share has been declining for several years now. While in 2010, when there was a shortage of conventional PV modules, thin-film accounted for 15 percent of the overall market, it declined to 8 percent in 2014, and is expected to stabilize at 7 percent from 2015 onward, with amorphous silicon expected to lose half of its market-share by the end of the decade.

[ "Thin film", "Substrate (chemistry)", "Solar cell", "layer", "Copper indium gallium selenide", "cdte solar cell" ]
Parent Topic
Child Topic
    No Parent Topic