Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry

2021 
Silicon offers high theoretical capacity as a negative electrode material for lithium-ion batteries; however, high irreversible capacity upon initial cycling and poor cycle life have limited commercial adoption. Herein, we report an operando isothermal microcalorimetry (IMC) study of a model system containing lithium metal and silicon composite film electrodes during the first two cycles of (de)lithiation. The total heat flow data are analyzed in terms of polarization, entropic, and parasitic heat flow contributions to quantify and determine the onset of parasitic reactions. These parasitic reactions, which include solid–electrolyte interphase formation, contribute to electrochemical irreversibility. Cycle 1 lithiation demonstrates the highest thermal energy output at 1509 mWh/g, compared to cycle 1 delithiation and cycle 2. To complement the calorimetry, operando X-ray diffraction is used to track the phase evolution of silicon. During cycle 1 lithiation, crystalline Si undergoes transformation to amorph...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []