language-icon Old Web
English
Sign In

Isothermal microcalorimetry

Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C).'it is possible to differentiate between normal and tumorous tissue samples by microcalorimetric measurement based on the distinctly higher metabolic activity of malignant tissue. Furthermore, microcalorimetry allows a differentiation and classification of tissue samples into their histological grading.''...microcalorimetry is a sensitive and particularly suitable method for the analysis of cytotoxicity kinetics.' 'Microcalorimetry appears to be a convenient and easy technique for measuring metabolic processes...in...living cells. As opposed to standard bioassay procedures, this technique allows continuous measurements of the metabolism of living cells. We have thus shown that Cr(VI) impairs metabolic pathways of human fibroblasts and particularly glucose utilization.' '...is a rapid method, convenient to operate and with good reproducibility. The present method can in most cases replace more time-consuming light and electron microscopic investigations for quantitating of adhered cells.''The cytotoxicity of particulate materials such as bioactive glass and hydroxyapatite particles can be evaluated using the microcalorimetry method. This is a modern method for in vitro study of biomaterials biocompatibility and cytotoxicity which can be used alongside the old conventional assays.' Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C).

[ "Enthalpy", "Biochemistry", "Organic chemistry", "Inorganic chemistry", "Bacillus shigae", "dilution enthalpy", "Dioclea grandiflora lectin", "N-Glycylglycine" ]
Parent Topic
Child Topic
    No Parent Topic