Calprotectin (S100A8/S100A9) and myeloperoxidase: Co-regulators of formation of reactive oxygen species

2010 
Inflammatory mediators trigger polymorphonuclear neutrophils (PMN) to produce reactive oxygen species (ROS: O2-, H2O2, ∙OH). Mediated by myeloperoxidase in PMN, HOCl is formed, detectable in a chemiluminescence (CL) assay. We have shown that the abundant cytosolic PMN protein calprotectin (S100A8/A9) similarly elicits CL in response to H2O2 in a cell-free system. Myeloperoxidase and calprotectin worked synergistically. Calprotectin-induced CL increased, whereas myeloperoxidase-triggered CL decreased with pH > 7.5. Myeloperoxidase needed NaCl for CL, calprotectin did not. 4-hydroxybenzoic acid, binding ∙OH, almost abrogated calprotectin CL, but moderately increased myeloperoxidase activity. The combination of native calprotectin, or recombinant S100A8/A9 proteins, with NaOCl markedly enhanced CL. NaOCl may be the synergistic link between myeloperoxidase and calprotectin. Surprisingly- and unexplained- at higher concentration of S100A9 the stimulation vanished, suggesting a switch from pro-oxidant to anti-oxidant function. We propose that the ∙OH is predominant in ROS production by calprotectin, a function not described before.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    11
    Citations
    NaN
    KQI
    []