Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra

2019 
Plasmonic metal nanoparticles arranged in periodic arrays can generate surface lattice plasmon resonances (SLRs) with high Q-factors. These collective resonances are interesting because the associated electromagnetic field is delocalized throughout the plane of the array, enabling applications such as biosensing and nanolasing. In most cases such periodic nanostructures are created via top-down nanofabrication processes. Here we describe a capillary-force-assisted particle assembly method (CAPA) to assemble monodisperse single-crystal colloidal Ag cuboctahedra into nearly defect-free >1 cm2 hexagonal lattices. These arrays are large enough to be measured with conventional ultraviolet–visible spectroscopy, which revealed an extinction peak with a Q-factor of 30 at orthogonal illumination and up to 80 at oblique illumination angles. We explain how the experimental extinction changes with different light polarizations and angles of incidence, and compare the evolution of the peaks with computational models b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    17
    Citations
    NaN
    KQI
    []