Quantitative Morphometry of Elastic Fibers in Pelvic Organ Prolapse.

2021 
Pelvic organ prolapse (POP) is common among older women who have delivered children vaginally. While the pathophysiology is not fully delineated, POP can occur in part from insufficient repair of disrupted elastic matrix fibers. Quantification of structural changes to elastic fibers has not been described previously for POP. The goal of this paper is to present a validated technique for morphometric analysis of elastic fibers in vaginal tissue cultures from lysyl oxidase like-1 knock out (LOXL1 KO) mice with POP. The effect of LOXL1 KO, effect of POP, effect of culture, and effect of elastogenic treatment on the changes in elastin fiber characteristics were tested using vaginal tissues from wild type multiparous (WT), LOXL1 KO multiparous prolapsed (POP) and LOXL1 KO multiparous non-prolapsed (NP) mice. Our results show significantly higher mean aspect ratio, maximum diameter and perimeter length in POP compared to NP after 3 weeks of tissue culture. Further, treatment of POP tissues in culture with growth factors with previously documented elastogenic effects caused a significant increase in the mean area and perimeter length of elastic fibers. This technique thus appears to be useful in quantifying structural changes and can be used to assess the pathophysiology of POP and the effect of elastogenic treatments with potential for POP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []