language-icon Old Web
English
Sign In

Lysyl oxidase

401516948ENSG00000113083ENSMUSG00000024529P28300P28301NM_002317NM_001178102NM_001317073NM_010728NM_001286181NM_001286182NP_001171573NP_001304002NP_002308NP_001273110NP_001273111NP_034858Lysyl oxidase (LOX), also known as protein-lysine 6-oxidase, is an enzyme that, in humans, is encoded by the LOX gene. It catalyzes the conversion of lysine molecules into highly reactive aldehydes that form cross-links in extracellular matrix proteins. Its inhibition can cause osteolathyrism, but, at the same time, its upregulation by tumor cells may promote metastasis of the existing tumor, causing it to become malignant and cancerous. Lysyl oxidase (LOX), also known as protein-lysine 6-oxidase, is an enzyme that, in humans, is encoded by the LOX gene. It catalyzes the conversion of lysine molecules into highly reactive aldehydes that form cross-links in extracellular matrix proteins. Its inhibition can cause osteolathyrism, but, at the same time, its upregulation by tumor cells may promote metastasis of the existing tumor, causing it to become malignant and cancerous. In the yeast strain Pichia pastoris, lysyl oxidase constitutes a homodimeric structure. Each monomer consists of an active site that includes a Cu(II) atom coordinated with three histidine residues as well as 2,4,5-trihydroxyphenalanine quinone (TPQ), a crucial cofactor. In humans, the LOX gene is located on chromosome 5q23.3-31.2. The DNA sequence encodes a polypeptide of 417 amino acids, the first 21 residues of which constitute a signal peptide, with a weight of approximately 32 kDa. The carboxyterminus contains the active copper (II) ion, lysine, tyrosine, and cysteine residues that comprise the catalytically active site. The three-dimensional structure of human lysyl oxidase has not yet been resolved. The mechanism of lysyl oxidase occurs via modification of the ε-amino group of a lysine side chain. The enzyme falls into the category of quinone-containing copper amine oxidases, and the reaction is highly dependent on the cofactor lysyl tyrosylquinone (LTQ). The LTQ cofactor is unique among quinones due to its ortho/benzoquinone structure and neutral charge under physiological pH. This can be contrasted with the similar ubiquitous quinocofactor TPQ, which exists as a negatively charged structure under physiological conditions and includes ortho/para-carbonyl resonance functionality. LTQ is crucial in LOX-catalyzed conversion of lysine residues to α-aminoadipidic-δ-semialdehydes, generally referred to as allysines. In the oxidation of lysine, the ε-amine is first converted to a Schiff base via reaction with LTQ. While LTQ is still bound to the substrate, rate-limiting removal of the ε-proton yields an imine intermediate. Subsequent hydrolysis of the imine leads to release of the aldehyde product, allysine. Molecular oxygen and the copper ion are utilized to reoxidize the cofactor and yield another imine, producing hydrogen peroxide as a side product. Additional hydrolysis releases ammonia and the original cofactor, completing the catalytic cycle. Lysyl oxidase is an extracellular copper-dependent enzyme that catalyzes formation of aldehydes from lysine residues in collagen and elastin precursors. These aldehydes are highly reactive, and undergo spontaneous chemical reactions with other lysyl oxidase-derived aldehyde residues, or with unmodified lysine residues. This results in cross-linking collagen and elastin, which is essential for stabilization of collagen fibrils and for the integrity and elasticity of mature elastin. Complex cross-links are formed in collagen (pyridinolines derived from three lysine residues) and in elastin (desmosines derived from four lysine residues) that differ in structure. The importance of lysyl oxidase-derived cross-linking was established from animal studies in which lysyl oxidase was inhibited either by nutritional copper-deficiency or by supplementation of diets with β-aminopropionitrile (BAPN), an inhibitor of lysyl oxidase. This resulted in lathyrism, characterized by poor bone formation and strength, hyperextensible skin, weak ligaments, and increased occurrence of aortic aneurysms. These abnormalities correlated well with decreased cross-linking of collagen and elastin. Developmentally, reduced lysyl oxidase levels have been implicated in Menkes disease and Occipital horn syndrome, two X-linked recessive disorders characterized by a mutation in a gene for copper transportation. Thus, not only is LOX crucial to cardiovascular development, it is thought to play a major role in connective tissue development and may also be important in neurological function.

[ "Extracellular matrix", "Enzyme", "Simtuzumab", "Lysine tyrosylquinone", "Lysyl Oxidase-Like Protein 2", "L-lysine oxidase", "Allysine" ]
Parent Topic
Child Topic
    No Parent Topic