Thermal Inactivation of Salmonella Agona in Low–Water Activity Foods: Predictive Models for the Combined Effect of Temperature, Water Activity, and Food Component

2018 
ABSTRACT Salmonella can survive in low-moisture, high-protein, and high-fat foods for several years. Despite nationwide outbreaks and recalls due to the presence of Salmonella in low-moisture foods, information on thermal inactivation of Salmonella in these products is limited. This project evaluated the impact of water activity (aw), temperature, and food composition on thermal inactivation of Salmonella enterica serovar Agona in defined high-protein and high-fat model food matrices. Each matrix was inoculated with Salmonella Agona and adjusted to obtain a target aw, ranging from 0.50 to 0.98. Samples were packed into aluminum test cells and heated (52 to 90°C) under isothermal conditions. Survival of Salmonella Agona was detected on tryptic soy agar with 0.6% yeast extract. Complex influences by food composition, aw, and temperature resulted in significantly different (P < 0.05) thermal resistance of Salmonella for the conditions tested. It was estimated that the same point temperatures at which the D-v...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    17
    Citations
    NaN
    KQI
    []