Robust Stability Analysis of a Linear Time-Periodic Active Helicopter Rotor

2012 
Robust stability of a helicopter hingeless rotormodel used for air resonance alleviation is investigated in this paper. This aeroelastic phenomenon can be described naturally considering the rotor as a whole through a time-periodic change of coordinates called multiblade coordinates transformation. To assess robust stability of the resulting continuous linear time-periodic system, this paper defines a set of uncertainties specific to the helicopter rotor problem. The uncertain system is written in the form of a linear fractional representation and transformed using a frequency-lifting technique. This leads to a time-invariant representation of the uncertain system, the so-called harmonic transfer function. The extension of the standard -analysis to such lifted systems is proposed in the paper. Compared with a similar approach from literature based on an elementary example, the technique requires a moderate increase of the number of inputs and outputs, thus reducing the numerical effort involved in the computation of the -bounds. Themethodology, applied to the uncertain closed-loop helicopter rotor, shows robust stability for the defined set of uncertainty. The results are compared to an analysis performed on the base of a linear time-invariant system to quantify how strongly robust stability bounds are underestimated when the periodicity is not accounted for.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []