Central leptin action improves skeletal muscle AKT, AMPK, and PGC1α activation by hypothalamic PI3K-dependent mechanism

2010 
Central leptin action requires PI3K activity to modulate glucose homeostasis and peripheral metabolism. However, the mechanism behind this phenomenon is not clearly understood. We hypothesize that hypothalamic PI3K activity is important for the modulation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway, PGC1α, and AKT in skeletal muscle (SM). To address this issue, we injected leptin into the lateral ventricle of rats. Hypothalamic JAK2 and AKT were activated by intracerebroventricular (ICV) injection of leptin in a time-dependent manner. Central leptin improved tolerance to glucose (GTT), increased PGC1α expression, and AKT, AMPK, ACC and JAK2 phosphorylation in the soleus muscle. Previous ICV administration of either LY294002 or propranolol (IP) blocked these effects. We concluded that the activation of the hypothalamic PI3K pathway is important for leptin-induced AKT phosphorylation, as well as for active catabolic pathway through AMPK and PGC1α in SM. Thus, a defective leptin signalling PI3K pathway in the hypothalamus may contribute to peripheral resistance to insulin associated to diet-induced obesity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    57
    Citations
    NaN
    KQI
    []