Photopolymerizable chitosan hydrogels with improved strength and 3D printability.

2021 
Abstract Chitosan hydrogel have presented great potential in biomedical applications due to its biocompatibility, biodegradability and characteristic similarity to native extracellular matrix. However, 3D printing of chitosan hydrogel often suffers from weak formability and poor mechanical property, limiting its further utilization. In this study, a novel chiotsan hydrogel is prepared from maleic chitosan (MCS) with high acrylate group substitution (i.e. 1.67) and thiol-terminated poly (ethylene glycol) (TPEG) via step-chain growth photopolymerization approach, which can overcome significantly the oxygen inhibition effect. Rheological property, microstructure, mechanical properties and in vitro degradation can be regulated by changing the thiol/acrylate molar ratio. There is strong intermolecular action between MCS and TPEG. Notably, photopolymerized MCS/TPEG hydrogel exhibited ~2-fold and ~ 10-fold increase in gelling rate and compressive strength, respectively, compared to pure chitosan hydrogel. Based on these results, 3D printing of chitosan hydrogel fabricated by simultaneous extrusion deposition and thiol-acrylate photopolymerization, demonstrates printing accuracy and improved scaffold stability. This 3D printing of chitosan hydrogel shows no cytotoxicity and can support adherence of L929 cells, suggesting its potential in biomedical applications such as tissue engineering and drug delivery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []