Rearrangement of 1,3-Dipolar Cycloadducts Derived from Bis(phenylazo)stilbene: A DFT Level Mechanistic Investigation#

2007 
The 1,3-dipolar cycloaddition of bis(phenylazo)stilbene with activated ethene and ethyne derivatives and the subsequent rearrangement of the cycloadducts have been studied using model compounds at the B3LYP/6-31G(d) level of density functional theory (DFT). From the structural and electronic features, a five-membered zwitterionic ring system 9 (1,2,3-triazolium-1-imide system) formed from bis(phenylazo)ethylene is confirmed as the active 1,3-dipole species in the reaction. Formation of the 1,3-dipolar cycloadduct from the alkyne derivative is found to be 26.0 kcal/mol exergonic, and it requires an activation free energy of 19.4 kcal/mol. The 1,3-cycloadduct formed in the reaction undergoes a very facile migration of a nitrogen-bearing fragment, passing through a zwitterionic transition state. A small activation free energy of 8.2 kcal/mol is observed for this step of the reaction, and it is 19.6 kcal/mol exergonic. Further activation of the newly formed rearranged product is possible under elevated temper...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    7
    Citations
    NaN
    KQI
    []