Patterning optimization for 55nm design rule DRAM/flash memory using production-ready customized illuminations

2005 
Illumination optimization, often combined with optical proximity corrections (OPC) to the mask, is becoming one of the critical components for a production-worthy lithography process for 55nm-node DRAM/Flash memory devices and beyond. At low-k 1 , e.g. k 1 1 <0.31 DRAM/Flash memory patterns, using an ASML XT:1400i at NA 0.93, where the all necessary manufacturability requirements are fully accounted for during the optimization. The imaging contrast in the resist is optimized in a reduced solution space constrained by the manufacturability requirements, which include minimum distance between poles, minimum opening pole angles, minimum ring width and minimum source filling factor in the sigma space. For additional performance gains, the intensity within the optimized source can vary in a gray-tone fashion (eight shades used in this work). Although this new optimization approach can sometimes produce closely spaced solutions as gauged by the NILS based metrics, we show that the optimal and production-ready source shape solution can be easily determined by comparing the best solutions to the "free-form" solution and more importantly, by their respective imaging fidelity and process latitude ranking. Imaging fidelity and process latitude simulations are performed to analyze the impact and sensitivity of the manufacturability requirements on pattern specific illumination optimizations using ASML XT:1400i and other latest imaging systems. Mask model based OPC (MOPC) is applied and optimized sequentially to ensure that the CD uniformity requirements are met.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []