Sensitive Molybdenum Disulfide Based Field Effect Transistor Sensor for Real-time Monitoring of Hydrogen Peroxide
2019
A reliable and highly sensitive hydrogen peroxide (H2O2) field effect transistor (FET) sensor is reported, which was constructed by using molybdenum disulfide (MoS2)/reduced graphene oxide (RGO). In this work, we prepared MoS2 nanosheets by a simple liquid ultrasonication exfoliation method. After the RGO-based FET device was fabricated, MoS2 was assembled onto the RGO surface for constructing MoS2/RGO FET sensor. The as-prepared FET sensor showed an ultrahigh sensitivity and fast response toward H2O2 in a real-time monitoring manner with a limit of detection down to 1 pM. In addition, the constructed sensor also exhibited a high specificity toward H2O2 in complex biological matrix. More importantly, this novel biosensor was capable of monitoring of H2O2 released from HeLa cells in real-time. So far, this is the first report of MoS2/RGO based FET sensor for electrical detection of signal molecules directly from cancer cells. Hence it is promising as a new platform for the clinical diagnosis of H2O2-related diseases.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
53
References
14
Citations
NaN
KQI