Bismuth–Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries

2019 
Antimony (Sb)-based anode materials have recently aroused great attention in potassium-ion batteries (KIBs), because of their high theoretical capacities and suitable potassium inserting potentials. Nevertheless, because of large volumetric expansion and severe pulverization during potassiation/depotassiation, the performance of Sb-based anode materials is poor in KIBs. Herein, a composite nanosheet with bismuth–antimony alloy nanoparticles embedded in a porous carbon matrix (BiSb@C) is fabricated by a facile freeze-drying and pyrolysis method. The introduction of carbon and bismuth effectively suppress the stress/strain originated from the volume change during charge/discharge process. Excellent electrochemical performance is achieved as a KIB anode, which delivers a high reversible capacity of 320 mA h g–1 after 600 cycles at 500 mA g–1. In addition, full KIBs by coupling with Prussian Blue cathode deliver a high capacity of 396 mA h g–1 and maintain 360 mA h g–1 after 70 cycles. Importantly, the operan...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    76
    Citations
    NaN
    KQI
    []