Dax‐1 Knockdown in Mouse Embryonic Stem Cells Induces Loss of Pluripotency and Multilineage Differentiation

2009 
Dax-1 (Nr0b1) is an orphan member of the nuclear hormone receptor superfamily that has a key role in adrenogonadal development and function. Recent studies have also implicated Dax-1 in the transcriptional network controlling embryonic stem (ES) cell pluripotency. Here, we show that Dax-1 expression is affected by differentiating treatments and pharmacological activation of β-catenin–dependent transcription in mouse ES cells. Furthermore, Dax-1 knockdown induced upregulation of multilineage differentiation markers, and produced enhanced differentiation and defects in ES viability and proliferation. Through RNA interference and transcriptome analysis, we have identified genes regulated by Dax-1 in mouse ES cells at 24 and 48 hours after knockdown. Strikingly, the great majority of these genes are upregulated, showing that the prevalent function of Dax-1 is to act as a transcriptional repressor in mouse ES cells, as confirmed by experiments using the Gal4 system. Genes involved in tissue differentiation and control of proliferation are significantly enriched among Dax-1–regulated transcripts. These data show that Dax-1 is an essential element in the molecular circuit involved in the maintenance of ES cell pluripotency and have implications for the understanding of stem cell function in both physiological (adrenal gland) and clinical (Ewing tumors) settings where Dax-1 plays a pivotal role in development and pathogenesis, respectively. STEM CELLS 2009;27:1529–1537
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    71
    Citations
    NaN
    KQI
    []