The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation

2007 
In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post-translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A4-glyceraldehyde-3-phosphate dehydrogenase (A4-GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H2O2. The formation of a mixed disulfide between glutathione and A4-GAPDH resulted in the inhibition of enzyme activity. A4-GAPDH was also inhibited by oxidants such as H2O2. However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the AnBn-GAPDH isozyme in either A2B2 or A8B8 conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3-bisphosphoglycerate. In the presence of 1,3-bisphosphoglycerate, A4-GAPDH was fully protected from either oxidation or glutathionylation. Site-directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active-site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A4-GAPDH from irreversible oxidation under stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    99
    Citations
    NaN
    KQI
    []