Nonlinear spin filter for nonmagnetic materials at zero magnetic field

2020 
The ability to convert spin accumulation to charge currents is essential for applications in spintronics. In semiconductors, spin-to-charge conversion is typically achieved using the inverse spin Hall effect or using a large magnetic field. Here we demonstrate a general method that exploits the non-linear interactions between spin and charge currents to perform all-electrical, rapid and non-invasive detection of spin accumulation without the need for a magnetic field. We demonstrate the operation of this technique with ballistic GaAs holes as a model system with strong spin-orbit coupling, in which a quantum point contact provides the non-linear energy filter. This approach is generally applicable to electron and hole systems with strong spin orbit coupling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []