Dense Plasma X-ray Scattering: Methods and Applications

2009 
Abstract We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi-degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with non-collective Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion–ion structure factor and consequently the equation of state of dense matter can be directly tested.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []