Fibrosis in endstage human heart failure: severe changes in collagen metabolism and MMP/TIMP profiles.
2011
Abstract Objectives We studied fibrosis, collagen metabolism, MMPs/TIMPs and cytokine expression in various forms of human heart failure (HF) by quantitative immunofluorescent microscopy, Western blot, zymography, RT-PCR and in situ hybridization. In explanted human hearts with HF due to either dilated (DCM, n =6) or ischemic (ICM-BZ-borderzone, ICM-RZ-remote zone, n =7) or inflammatory (myocarditis, MYO, n =6) cardiomyopathy and 8 controls MMP2, 8, 9, 19, and TIMP1, 2, 3, 4 as well as procollagens I and III (PINP, PIIINP), mature collagen III (IIINTP) and the cross-linked collagen I degradation product (ICTP) were measured. Results In comparison with controls, MMPs and TIMPs were significantly upregulated ranging (from highest to lowest) from ICM-BZ, DCM, ICM-RZ, MYO for all MMPs with the exception of MMP9 (highest in DCM), and for TIMPs from ICM-BZ, ICM-RZ, DCM and MYO. MMP2 and 9 were activated in all groups. The TIMP/MMP ratio was 1.3 for control, 1.9 in ICM-BZ (TIMP>MMP) and lowered to 1.0 in the other groups. Collagen I/collagen III ratio correlated significantly with the decrease in LVEDP. PINP was higher than ICTP in all groups. PIIINP elevation was present in DCM and ICM-RZ and IIINTP was up to 4-fold augmented in all groups. Fibrosin mRNA was upregulated in ICM-BZ, activin A in MYO but FGF1 and FGF2 remained unchanged. ANP mRNA was increased in all groups. Conclusions Although different degrees of severity of collagen metabolism, MMP/TIMP imbalance and cytokine expression in diverse forms of HF are present, the end product is collagen deposition. These findings suggest multiple mechanisms acting alone or in concert in fibrosis development in HF.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
102
Citations
NaN
KQI