language-icon Old Web
English
Sign In

MMP2

1CK7, 1CXW, 1EAK, 1GEN, 1GXD, 1HOV, 1J7M, 1KS0, 1QIB, 1RTG, 3AYU431317390ENSG00000087245ENSMUSG00000031740P08253P33434NM_004530NM_001127891NM_001302508NM_001302509NM_001302510NM_008610NP_001121363NP_001289437NP_001289438NP_001289439NP_004521NP_03263672 kDa type IV collagenase also known as matrix metalloproteinase-2 (MMP-2) and gelatinase A is an enzyme that in humans is encoded by the MMP2 gene. The MMP2 gene is located on chromosome 16 at position 12.2.1ck7: GELATINASE A (FULL-LENGTH)1cxw: THE SECOND TYPE II MODULE FROM HUMAN MATRIX METALLOPROTEINASE 21eak: CATALYTIC DOMAIN OF PROMMP-2 E404Q MUTANT1gxd: PROMMP-2/TIMP-2 COMPLEX1j7m: The Third Fibronectin Type II Module from Human Matrix Metalloproteinase 21ks0: The First Fibronectin Type II Module from Human Matrix Metalloproteinase 21rtg: C-TERMINAL DOMAIN (HAEMOPEXIN-LIKE DOMAIN) OF HUMAN MATRIX METALLOPROTEINASE-2 72 kDa type IV collagenase also known as matrix metalloproteinase-2 (MMP-2) and gelatinase A is an enzyme that in humans is encoded by the MMP2 gene. The MMP2 gene is located on chromosome 16 at position 12.2. Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix (ECM) in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. This gene encodes an enzyme which degrades type IV collagen, the major structural component of basement membranes. The enzyme plays a role in endometrial menstrual breakdown, regulation of vascularization and the inflammatory response. The role of MMP2 in lymphangiogenesis was considered in a modelling and theoretical study; MMP2 degrades collagen I to switch on different patterning mechanisms for VEGFC. Activation of MMP-2 requires proteolytic processing. A complex of membrane type 1 MMP (MT1-MMP/MMP14) and tissue inhibitor of metalloproteinase 2 recruits pro-MMP 2 from the extracellular milieu to the cell surface. Activation then requires an active molecule of MT1-MMP and auto catalytic cleavage. Clustering of integrin chains promotes activation of MMP-2. Another factor that will support the activation of MMP-2 is cell-cell clustering. A wild-type activated leukocyte cell adhesion molecule (ALCAM) is also required to activate MMP-2. Mutations in the MMP2 gene are associated with Torg-Winchester syndrome, multicentric osteolysis, arthritis syndrome, and possibly keloids. Activity of MMP-2 relative to the other gelatinase (MMP-9) has been associated with severity of chronic airway diseases including Idiopathic interstitial pneumonia and Bronchiectasis. In idiopathic interstitial pneumonia, MMP-2 activity was elevated in patients with the less severe disease phenotype which is more responsive and reversible with corticosteroid therapy. In non-cystic fibrosis bronchiectasis, MMP-2 concentration was elevated in patients with Haemophilus influenzae airway infection compared to Pseudomonas aeruginosa airway infection. Bronchiectasis patients with P. aeruginosa infection have a more rapid decline in lung function. Altered expression and activity levels of MMPs have been strongly implicated in the progression and metastasis of many forms of cancer. Increased MMP-2 activity has also been linked with a poor prognosis in multiple forms of cancer including colorectal, melanoma, breast, lung, ovarian, and prostate. Furthermore, changes in MMP-2 activity can come from alterations in levels of transcription, MMP secretion, MMP activation, or MMP inhibition. MMP production in many cancers may be upregulated in surrounding stromal tissue rather than simply in the tumor lesion. For instance, Mook, et al. showed that MMP-2 mRNA levels are strikingly similar between metastatic and non-metastatic lesions in colorectal cancer, but metastatic cases are correlated with higher levels of MMP-2 mRNA in surrounding healthy tissue. For this reason, it is difficult to fully understand the complex role of MMPs in cancer progression. One of the major implications of MMPs in cancer progression is their role in ECM degradation, which allows cancer cells to migrate out of the primary tumor to form metastases. More specifically, MMP-2 (along with MMP-9) is capable of degrading type IV collagen, the most abundant component of the basement membrane. The basement membrane is important for maintaining tissue organization, providing structural support for cells, and influencing cell signaling and polarity. Degradation of the basement membrane is an essential step for the metastatic progression of most cancers. Cancer cell invasion, ECM degradation, and metastasis are highly linked with the presence of invadopodia, protrusive and adhesive structures on cancer cells. Invadopodia have been shown to concentrate MMPs (including MT1-MMP, MMP-2, and MMP-9) for localized release and activation. Furthermore, degradation products of MMP activity may further promote invadopodia formation and MMP activity. Finally, MMP-2 and several other MMPs have been shown to proteolytically activate TGF-β, which has been shown to promote epithelial mesenchymal transition (EMT), a key process involved in cancer metastasis. MMP degradation of the ECM affects cellular behavior through changes in integrin-cell binding, by releasing growth factors harbored by the ECM, by generating ECM degradation products, and by revealing cryptic binding sites in ECM molecules. For instance, MMP-2 degradation of collagen type I can reveal a previously inaccessible cryptic binding site that binds with the αvβ3 integrin expressed by human melanoma cells. Signaling through this integrin is necessary for melanoma cell viability and growth in a collagen matrix and can potentially rescue the cells from apoptosis. As another example, cleavage of laminin-5, a component of the basement membrane, by MMP-2 has been shown to reveal a cryptic site inducing migration of breast epithelial cells.

[ "Matrix metalloproteinase", "Cancer", "Metastasis", "Gene", "Downregulation and upregulation", "Matrix metallopeptidase 7", "Torg Syndrome", "MMP17", "MMP14", "Torg-Winchester Syndrome" ]
Parent Topic
Child Topic
    No Parent Topic