Modeling Complex Solvent Effects on the Optical Rotation of Chiral Molecules: A Combined Molecular Dynamics and Density Functional Theory Study.

2021 
The challenge of assigning the absolute stereochemical configuration to a chiral compound can be overcome via accurate ab initio predictions of optical rotation, a sensitive molecular property that is further complicated by solvent effects. The solvent's "chiral imprint"-the transfer of the chirality from the solute to the surrounding achiral solvent-is explored here using conformational averaging and time-dependent density-functional theory. These complex solvent effects are taken into account via simple averaging over a molecular dynamics trajectory together with the explicit quantum mechanical consideration of the solvent molecules within the solute's cybotactic region and implicit modeling of the bulk solvent. We consider several axes along which the system's optical rotation varies, including the sampling of the dynamical trajectory, the quality of the one-electron basis set, and the use of continuum solvent models to account for bulk effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []