IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation

2010 
Aims Nitric oxide (NO) and atrial natriuretic peptide (ANP) signalling via cGMP controls smooth muscle tone. One important signalling pathway of cGMP-dependent protein kinase type I (cGKI) is mediated by IRAG (IP3 receptor associated cGKI substrate) which is highly expressed in smooth muscle tissues. To elucidate the role of IRAG for NO- and ANP-mediated smooth muscle tone regulation, cGKI localization, and for its possible function in blood pressure adjustment, we generated IRAG-knockout mice by targeted deletion of exon 3. Methods and results IRAG deletion prevented stable interaction of IP3 receptor type I (IP3RI) with cGKIβ determined by cGMP affinity chromatography. Confocal microscopy in vascular smooth muscle cells (VSMCs) showed that localization of cGKIβ and cGKIα did not change in absence of IRAG. NO-, ANP-, and cGMP-dependent relaxation of hormone-contracted aortic vessels and colon was significantly affected in IRAG-knockout mice. The suppression of cGMP-induced relaxation was not rescued by selective expression of cGKIβ in smooth muscle from cGKIβ-transgenic mice. NO-, ANP-, and cGMP-mediated inhibition of the hormone-induced increase in intracellular calcium concentration measured by Fura2 was suppressed in IRAG-deficient VSMC. Telemetric measurements revealed that IRAG-deficient animals exhibited normal basal tone, but were resistant to blood pressure reduction induced by lipopolysaccharide-treatment. Conclusion These findings indicate that signalling of cGKIβ via IRAG is an essential functional part for regulation of smooth muscle tone and of intracellular calcium by NO (exogenously applicated or endogenously synthesized) and by ANP. IRAG signalling does not modulate basal tone but might be important for blood pressure regulation under pathophysiological conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    45
    Citations
    NaN
    KQI
    []