Response of the sediment geochemistry of the Changjiang River (Yangtze River) to the impoundment of the Three Gorges Dam

2019 
Abstract Based on the measurement of major and trace elements in suspended sediments in the low reaches of the Changjiang River during throughout a whole hydrologic year, the origins, seasonal variations, and fluxes of multielements and the human impacts on multielements transport processes have been analyzed along with the influence of weathering in the Changjiang River basin. The results show that most element contents were high in both autumn and winter and low in summer, which was largely caused by the dilution of discharge. Weathering detritus in the Changjiang River basin is the main source of most elements in suspended sediments. However, riverine pollution could bring more loadings of Cd, Pb, As and Zn into river water than it did a few decades ago. The annual average fluxes of Cd, Pb and Zn, which are major contamination elements, to the sea were 179 ± 21 tons/year, 7810 ± 675 tons/year, and 12,000 ± 1320 tons/year, respectively, in which approximately 8.7%, 11.9% and 2.7% of their loadings, respectively, were contributed by pollution inputs. Element exports mainly occurred in the summer (44.4%–57.4%) in the lower part of the Changjiang River. A general relationship between sediment retention and element content suggests a positive feedback mechanism for the decreased number of particles, in which element riverine loadings are reduced due to the enhanced trapping effect by the Three Gorges Dam (TGD). Compared to those in 1980, current element shares of the Changjiang River compared to the global budget have declined due to the construction of the TGD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    6
    Citations
    NaN
    KQI
    []