Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes.

2016 
Abstract Curcumin is a highly potent nutraceutical associated with various health benefits. However, its hydrophobic nature affects its bioavailability and bioactivity, and limits nutraceutical applications. Drug-in-cyclodextrin-in-liposome has the ability to mask the hydrophobic nature of drug and achieve better encapsulation. Also, encapsulating iron oxide nanoparticles (IONPs) within liposomes endow additional beneficial functionalities of IONPs. In the present study, curcumin-β-cyclodextrin inclusion complex (IC) and IONPs were co-encapsulated within liposomes (curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes) to achieve the synergistic antioxidant potential of curcumin and IONPs. IC of curcumin-β-cyclodextrin was prepared by a simple rapid method and successful inclusion was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Mean diameter of IONPs was found to be 180 nm and X-ray diffraction pattern confirmed the formation of hematite nanoparticles. Band gap energy calculated using absorption spectra was 2.25 eV, which falls in close proximity with the theoretically calculated values of hematite. Mean diameter of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes was 67 nm and encapsulation efficiency of curcumin was found to be 71%. Further, the co-encapsulated particles possessed significantly low IC 50 value (64.7791 μg/ml, p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    28
    Citations
    NaN
    KQI
    []