The effect of sound level, temperature and dehydration on the brainstem auditory evoked potential in anuran amphibians

1993 
Abstract Brainstem auditory evoked potentials (BAEPs) were used to examine the effects of sound level, temperature, and dehydration on the auditory pathway of three species of anuran amphibians: Rana pipiens, Bufo americanus and B. terrestris. BAEP latency, amplitude and a measure of threshold were determined for all stimulus and test conditions. Threshold values obtained with this technique were similar to other neural measures of threshold in anurans, and were stable for repeated measures within 12 h and over three days. Transient changes in temperature caused non-linear changes in BAEP threshold and latency. Above 20°C small threshold shifts were elicited, while below 20°C we observed rapid deterioration of threshold. Animals acclimated to a cold temperature (14°C) were acoustically less sensitive than warm (21°C) animals, even when both groups were tested at colder temperatures. Because peripheral components of the BAEP were most affected by both transient and acclimation (longer term) cooling and warming, the sensory epithelium appears to be the most temperature-sensitive component of the auditory pathway. Dehydrated frogs showed no auditory dysfunction until a critical level of dehydration was reached. More dehydration-resistant species ( B. terrestris and B. americanus ) were less susceptible to BAEP degradation near their critical dehydration level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    18
    Citations
    NaN
    KQI
    []