Shotgun proteomics analysis reveals new unsuspected molecular effectors of nitrogen-containing bisphosphonates in osteocytes.

2011 
Abstract Nitrogen-containing bisphosphonates (N-BPs) are therapeutic agents used to treat osteoporosis and promote osteoblast and osteocyte survival. The molecular mechanisms underlying this effect have been extensively studied, but the global changes induced by N-BPs at the protein level are not known. In this context, we investigated the effect of 10 − 7  M Risedronate for 1 h and 48 h on MLO-Y4 osteocytic cells, through a quantitative, label free shotgun proteomic analysis. We described herein a preliminary proteome map of untreated MLO-Y4 cells, composed of 353 protein species. Moreover, we identified 10 and 15 differentially expressed proteins after 1 h and 48 h of Risedronate treatment, respectively. Among these, PARK7/DJ-1 protein levels were induced up to 3 times and this event was associated with the activation of the pro-survival Akt pathway that we propose as a novel player in the effect of N-BPs on osteocytes. Risedronate was also able to induce the expression and the secretion of the growth factor pro-granulin. In addition, protein prenylation inhibition appeared to be involved in the modulation of MLO-Y4 proteome by RIS in a protein-specific manner. In conclusion, these findings unveil novel functions targeted by N-BPs in osteocytes and could be useful to design novel pharmaceutical compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    7
    Citations
    NaN
    KQI
    []