Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing

2020 
Fluorescence-based detection methods have been widely utilized in various applications. Materials that display aggregation-induced emission (AIE) are excellent fluorescence probes to offer high contrast ratio. Chromophore-conjugated plasmonic metal nanoparticles (NPs) have been recently found to display significantly enhanced fluorescence emission upon the formation of aggregates. This new type of AIE enhancement has a totally different working mechanism. It is based on aggregation-induced plasmon coupling of metal NPs to enhance the fluorescence intensity of chromophores by increasing both the excitation efficiency and radiative decay rates, instead of reducing nonradiative decay rates as in typical AIE. AIE enhancement of chromophore-conjugated metal NPs results in a dramatic change in fluorescence intensity from severely quenched fluorescence to significantly enhanced fluorescence upon aggregate formation. It offers excellent contrast ratio and is attractive for developing platforms for highly sensitiv...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    4
    Citations
    NaN
    KQI
    []