Functionalized Transparent Surfaces with Enhanced Self-Cleaning against Ink Aerosol Contamination

2017 
During operation of a standard commercial inkjet printer, suspended ink particles form an ink aerosol inside the printing chamber that can cause serious malfunctions, including contamination of the transparent window of the printhead position calibration optical sensors. In this work, transparent conducting film (TCF) and surface functionalization through self-assembled monolayer (SAM) are proposed and investigated to repel ink aerosol deposition on a transparent surface and to reduce its adverse effects. The results show that the combination of the Joule heating effect induced by applying an electrical current to the TCF and hydrophobic property of the SAM reduces transmittance loss from an average of 10% to less than 1.5%. Correspondingly, the area of the surface covered by ink decreases from 45.62% ± 6.15% to 1.71% ± 0.25%. The preliminary results are obtained with glass substrates and subsequently extended to the plastic window of a commercial inkjet printer calibration sensor, thus demonstrating the potential of the proposed approach to reduce aerosol contamination in real applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []