Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration

2021 
Integrating signals is essential for cell survival, leading to the concept of synthetic lethality. However, how signaling is integrated to control cell migration remains unclear. By conducting a "two-hit" screen, we revealed the synergistic reduction of cell migration when serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK) were simultaneously suppressed. Single-cell analyses showed that STK40 knockdown reduced cell motility and coordination by strengthening focal adhesion (FA) complexes. Furthermore, STK40 knockdown reduced translocation of yes-associated protein (YAP) into the nucleus, while MAPK inhibition further weakened YAP activities in the nucleus to disturb FA remodeling. Altogether, we unveiled an integrated STK40-YAP-MAPK system regulating cell migration, and introduced "synthetic dysmobility" as a novel strategy to collaboratively control cell migration. One Sentence SummaryBlocking collaborative pathways within the integrated signaling network synergistically disrupts the migration of cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []