Atrial Natriuretic Peptide Induces the Expression of MKP-1, a Mitogen-activated Protein Kinase Phosphatase, in Glomerular Mesangial Cells

1996 
Abstract Atrial natriuretic peptide (ANP) has been shown to inhibit the proliferation of various types of cells including glomerular mesangial cells. The activation of mitogen-activated protein kinase (MAPK) is one of the main signal transduction systems leading to cell proliferation. MAPK is tightly regulated by the activating kinase, MEK, and specific phosphatase MKP-1. Constitutive expression of MKP-1 has been shown to inhibit cell proliferation by suppressing MAPK activity. In order to understand the mechanism of the anti-proliferative effect of ANP, we examined whether ANP could inhibit MAPK by inducing MKP-1 in cultured rat glomerular mesangial cells. ANP increased the expression of MKP-1 mRNA in a dose-dependent (10 nM maximum) and time-dependent, with a peak stimulation at 30 min, manner. Receptor for ANP is a transmembrane guanylyl cyclase. Activation of guanylyl cyclase of ANP receptor by ligand plays an essential role in ANP signal transduction. 8-Bromo-cGMP, a cell permeable analogue of cyclic GMP, and sodium nitroprusside, an activator of soluble guanylyl cyclase, could mimic the effects of ANP and were able to induce the expression of MKP-1 in a similar time course as ANP. The protein expression of MKP-1 was maximally stimulated by ANP at 120 min. Treatment of the cells with ANP for 120 min resulted in an inhibition of phorbol ester-induced activation of MAPK, while the activation of MEK was not affected by ANP. These results indicate that ANP might inhibit the proliferation of mesangial cells by inactivating MAPK through the induction of MKP-1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    80
    Citations
    NaN
    KQI
    []