Strategies to detect interdigital cell death in the frog, Xenopus laevis: T3 accerelation, BMP application, and mesenchymal cell cultivation

2012 
Fates of digits in amniotes, i.e., free or webbed digits, are determined by the size of programmed interdigital cell death (ICD) area. However, no (or very few) cell death has thus far been observed in developing limb buds of non-amniotic terrestrial vertebrates including other anuran or urodela amphibians. We speculate that the undetectable situation of amphibian ICD is the result of their less frequency due to slow developmental speed characteristic to most amphibian species. Here, we present three strategies for detecting difficult-to-find ICD in the frog, Xenopus laevis. (1) Addition of triiodo-L-thyronine (T3) accelerated two to three times the limb development and increased two to four times the appearance frequency of vital dye-stainable cells in limb buds of the accelerated tadpoles (stage 54 to 55). (2) Application of human bone morphogenetic protein-4 to the autopods of tadpoles at stage 53 to 54 enhanced digital cartilage formation and induced vital dye-stainable cells around the enhanced digital cartilages within 2 d. (3) In cell culture, T3 increased the chondrogenic and cell death activities of limb mesenchymal cells. The augmentation of both activities by T3 was stronger in the forelimb cells than in the hindlimb cells. This situation is well coincided with the limb fates of non-webbed forelimbs and webbed hindlimbs in X. laevis adulthood. Collectively, all three approaches showed that it become possible to detect X. laevis ICD with appropriate strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []