Synthesis and characterization of scaffolds produced under mild conditions based on oxidized cashew gums and carboxyethyl chitosan.

2021 
Abstract This study describes the development of scaffolds based on carboxyethyl chitosan (CEC) and different oxidized cashew gums (CGOx) for tissue engineering (TE) applications. After the physico-chemical characterizations of CEC and CGOx (oxidation degree of 20, 35 and 50%), these macromolecules were used for producing the CGOx-CEC hydrogels through a Schiff base reaction, in the absence of any crosslinking agent. The CGOx-CEC scaffolds obtained after a freeze-drying process were characterized for their morphology, mechanical properties, swelling ability, degradation, and porosity. Those revealed to be highly porous (25–65%), and showed a stable swelling behavior, as well as degradation properties in the absence of enzymes. The use of the cashew gum with higher degree of oxidation led to scaffolds with higher crosslinking densities and increased compressive modulus. None of the hydrogels show cytotoxicity during the 14 days of incubation. Considering all the properties mentioned, these scaffolds are excellent candidates for soft tissue regeneration, owing to the use of eco-friendly starting materials and the easy tuning of their properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []