Cost-effective 400-Gbps micro-intradyne coherent receiver using optical butt-coupling and FPCB wirings

2018 
We present a cost-effective and bandwidth-enhanced 64-Gbaud micro-intradyne coherent receiver based on hybrid integration of InP waveguide-photodetector (WG-PD) and silica planar lightwave circuit (PLC). InP waveguide-photodetector (WG-PD) arrays are simply chip-to-chip bonded and optically butt-coupled to a silica-based dual-polarization optical hybrid chip. Multiple flexible printed circuit boards are adapted for electrical RF and DC wirings, which provide low-cost integration and good RF performance of the receiver. A 3-dB bandwidth of the fabricated coherent receiver is extended to ~36 GHz by optimization of bondwire inductance between the WG-PD array and the transimpedance amplifier (TIA), even when commercial TIAs with a typical bandwidth of ~29 GHz are used. Through optimization of the silica hybrid integrated coherent receiver, 64-Gbaud DP-16QAM signal transmission over 1050-km standard single-mode fiber is successfully demonstrated below a bit error rate of 2 × 10−3. This is the threshold for a soft decision-based forward error correction, at the optical signal to noise ratio of 23.8 dB.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []