Glucose Decreases Na+,K+-ATPase Activity in Pancreatic β-Cells AN EFFECT MEDIATED VIA Ca2+-INDEPENDENT PHOSPHOLIPASE A2 AND PROTEIN KINASE CDEPENDENT PHOSPHORYLATION OF THE α-SUBUNIT

1999 
Abstract In the pancreatic β-cell, glucose-induced membrane depolarization promotes opening of voltage-gatedl-type Ca2+ channels, an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i), and exocytosis of insulin. Inhibition of Na+,K+-ATPase activity by ouabain leads to β-cell membrane depolarization and Ca2+ influx. Because glucose-induced β-cell membrane depolarization cannot be attributed solely to closure of ATP-regulated K+ channels, we investigated whether glucose regulates other transport proteins, such as the Na+,K+-ATPase. Glucose inhibited Na+,K+-ATPase activity in single pancreatic islets and intact β-cells. This effect was reversible and required glucose metabolism. The inhibitory action of glucose was blocked by pretreatment of the islets with a selective inhibitor of a Ca2+-independent phospholipase A2. Arachidonic acid, the hydrolytic product of this phospholipase A2, also inhibited Na+,K+-ATPase activity. This effect, like that of glucose, was blocked by nordihydroguaiaretic acid, a selective inhibitor of the lipooxygenase metabolic pathway, but not by inhibitors of the cyclooxygenase or cytochrome P450-monooxygenase pathways. The lipooxygenase product 12(S)-HETE (12-S-hydroxyeicosatetranoic acid) inhibited Na+,K+-ATPase activity, and this effect, as well as that of glucose, was blocked by bisindolylmaleimide, a specific protein kinase C inhibitor. Moreover, glucose increased the state of α-subunit phosphorylation by a protein kinase C-dependent process. These results demonstrate that glucose inhibits Na+,K+-ATPase activity in β-cells by activating a distinct intracellular signaling network. Inhibition of Na+,K+-ATPase activity may thus be part of the mechanisms whereby glucose promotes membrane depolarization, an increase in [Ca2+]i, and thereby insulin secretion in the pancreatic β-cell.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    65
    Citations
    NaN
    KQI
    []