Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor

2011 
Mesenchymal stem cells (MSCs) inhibit T-cell activation and proliferation but their effects on individual T-cell-effector pathways and on memory versus naive T cells remain unclear. MSC influence on the differentiation of naive and memory CD4+ T cells toward the Th17 phenotype was examined. CD4+ T cells exposed to Th17-skewing conditions exhibited reduced CD25 and IL-17A expression following MSC co-culture. Inhibition of IL-17A production persisted upon re-stimulation in the absence of MSCs. These effects were attenuated when cell–cell contact was prevented. Th17 cultures from highly purified naive- and memory-phenotype responders were similarly inhibited. Th17 inhibition by MSCs was reversed by indomethacin and a selective COX-2 inhibitor. Media from MSC/Th17 co-cultures contained increased prostaglandin E2 (PGE2) levels and potently suppressed Th17 differentiation in fresh cultures. MSC-mediated Th17 inhibition was reversed by a selective EP4 antagonist and was mimicked by synthetic PGE2 and a selective EP4 agonist. Activation-induced IL-17A secretion by naturally occurring, effector-memory Th17 cells from a urinary obstruction model was also inhibited by MSC co-culture in a COX-dependent manner. Overall, MSCs potently inhibit Th17 differentiation from naive and memory T-cell precursors and inhibit naturally-occurring Th17 cells derived from a site of inflammation. Suppression entails cell-contact-dependent COX-2 induction resulting in direct Th17 inhibition by PGE2 via EP4.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    168
    Citations
    NaN
    KQI
    []