Preparation technology and electrical explosion characteristics of titanium–boron composites as nanoenergetic films

2016 
Based on magnetron sputtering deposition technology, Ti and B single thin films are deposited on a Si substrate while varying the sputtering power, the working pressure and the Ar flow conditions. The effect of varying these conditions on the deposition rate, the roughness and the microstructure of these materials is studied. The optimal parameters for preparing Ti and B single thin films are identified according to the experimental and analysis results. Thus, the deposition parameters are optimized to minimize the roughness of the thin films (i.e. sputtering power: 225 and 120 W; working pressure: 0.8 and 0.3 Pa; Ar flow: 100 and 50 sccm for Ti and B thin films, respectively). The compositions and crystal orientation of the Ti and B thin films deposited at these conditions are investigated by x-ray diffraction. These optimized parameters are used while depositing Ti–B thin films on a polyimide substrate. Scanning electron microscopy is used to observe the microstructure of the Ti–B multi-layer nanoenergetic films. A close contact between the Ti film and the substrate is observed along with a clear boundary between the B and Ti films. Finally, the results of an electrical explosion experiment over a Ti–B composite thin film are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []