Ovarian Cell Encapsulation in an Enzymatically Crosslinked Silk-Based Hydrogel with Tunable Mechanical Properties.

2021 
An artificial ovary is a promising approach for preserving fertility in prepubertal girls and women who cannot undergo current cryopreservation strategies. However, this approach is in its infancy, due to the possible challenges of creating a suitable 3D matrix for encapsulating ovarian follicles and stromal cells. To maintain the ovarian stromal cell viability and proliferation, as a first step towards developing an artificial ovary, in this study, a double network hydrogel with a high water swelling capacity (swelling index 15–19) was developed, based on phenol conjugated chitosan (Cs-Ph) and silk fibroin (SF) through an enzymatic crosslinking method using horseradish peroxidase. The addition of SF (1%) to Cs (1%) decreased the storage modulus (G’) from 3500 Pa (Cs1) to 1600 Pa (Cs-SF1), and the hydrogels with a rapid gelation kinetic produced a spatially homogeneous distribution of ovarian cells that demonstrated 167% proliferation after 7 days. This new Cs-SF hydrogel benefits from the toughness and flexibility of SF, and phenolic chemistry could provide the potential microstructure for encapsulating human ovarian stromal cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []