Prolonged low-dose dioxin exposure impairs metabolic adaptability to high-fat diet feeding in female but not male mice.

2021 
Objective Human studies consistently show an association between exposure to persistent organic pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka "dioxin"), and increased diabetes risk. We previously showed that a single high-dose TCDD exposure (20 µg/kg) decreased plasma insulin levels in male and female mice in vivo, but effects on glucose homeostasis were sex-dependent. The current study assessed whether prolonged exposure to a physiologically relevant low-dose of TCDD impacts glucose homeostasis and/or the islet phenotype in a sex-dependent manner in chow-fed or high fat diet (HFD)-fed mice. Methods Male and female mice were exposed to 20 ng/kg/d TCDD 2x/week for 12 weeks and simultaneously fed standard chow or a 45% HFD. Glucose homeostasis was assessed by glucose and insulin tolerance tests, and glucose-induced plasma insulin levels were measured in vivo. Histological analysis was performed on pancreas from male and female mice, and islets were isolated from females for Tempo-Seq® analysis. Results Low-dose TCDD exposure did not lead to adverse metabolic consequences in chow-fed male or female mice, or in HFD-fed males. However, TCDD accelerated the onset of HFD-induced hyperglycemia and impaired glucose-induced plasma insulin levels in female mice. TCDD caused a modest increase in islet area in males but reduced % beta cell area within islets in females. RNAseq analysis revealed abnormal changes to endocrine and metabolic pathways in TCDDHFD females. Conclusions Our data suggest that prolonged low-dose TCDD exposure has minimal effects on glucose homeostasis and islet morphology in chow-fed male and female mice, but promotes maladaptive metabolic responses in HFD-fed females.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    1
    Citations
    NaN
    KQI
    []