Net Analyte Signal-based Quantitative Determination of Fusel Oil in Korean Alcoholic Beverage Using FT-NIR Spectroscopy

2016 
Purpose: Fusel oil is a potent volatile aroma compound found in many alcoholic beverages. At low concentrations, it makes an essential contribution to the flavor and aroma of fermented alcoholic beverages, while at high concentrations, it induced an off-flavor and is thought to cause undesirable side effects. In this work, we introduce Fourier transform near-infrared (FT-NIR) spectroscopy as a rapid and nondestructive technique for the quantitative determination of fusel oil in the Korean alcoholic beverage “soju”. Methods: FT-NIR transmittance spectra in the 1000-2500 nm region were collected for 120 soju samples with fusel oil concentrations ranging from 0 to 1400 ppm. The calibration and validation data sets were designed using data from 75 and 45 samples, respectively. The net analyte signal (NAS) was used as a preprocessing method before the application of the partial least-square regression (PLSR) and principal component regression (PCR) methods for predicting fusel oil concentration. A novel variable selection method was adopted to determine the most informative spectral variables to minimize the effect of nonmodeled interferences. Finally, the efficiency of the developed technique was evaluated with two different validation sets. Results: Th e results revealed that the NAS-PLSR model with selected variables (   = 0.95, RMSEV = 100ppm) did not outperform the NAS-PCR model (   = 0.97, RMSEV = 7 8.9ppm). In addition, the NAS-PCR shows a better recovery for validation set 2 and a lower relative error for validation set 3 than the NAS-PLSR model. Conclusion: The experimental results indicate that the proposed technique could be an alternative to conventional methods for the quantitative determination of fusel oil in alcoholic beverages and has the potential for use in in-line process control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []