language-icon Old Web
English
Sign In

Principal component regression

In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). Typically, it considers regressing the outcome (also known as the response or the dependent variable) on a set of covariates (also known as predictors, or explanatory variables, or independent variables) based on a standard linear regression model, but uses PCA for estimating the unknown regression coefficients in the model. In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). Typically, it considers regressing the outcome (also known as the response or the dependent variable) on a set of covariates (also known as predictors, or explanatory variables, or independent variables) based on a standard linear regression model, but uses PCA for estimating the unknown regression coefficients in the model. In PCR, instead of regressing the dependent variable on the explanatory variables directly, the principal components of the explanatory variables are used as regressors. One typically uses only a subset of all the principal components for regression, thus making PCR some kind of a regularized procedure. Often the principal components with higher variances (the ones based on eigenvectors corresponding to the higher eigenvalues of the sample variance-covariance matrix of the explanatory variables) are selected as regressors. However, for the purpose of predicting the outcome, the principal components with low variances may also be important, in some cases even more important. One major use of PCR lies in overcoming the multicollinearity problem which arises when two or more of the explanatory variables are close to being collinear. PCR can aptly deal with such situations by excluding some of the low-variance principal components in the regression step. In addition, by usually regressing on only a subset of all the principal components, PCR can result in dimension reduction through substantially lowering the effective number of parameters characterizing the underlying model. This can be particularly useful in settings with high-dimensional covariates. Also, through appropriate selection of the principal components to be used for regression, PCR can lead to efficient prediction of the outcome based on the assumed model.

[ "Principal component analysis", "Linear regression", "Regression", "Kernel (linear algebra)", "Regression analysis" ]
Parent Topic
Child Topic
    No Parent Topic