X-ray and neutron small-angle scattering analysis of the complex formed by the met receptor and the Listeria monocytogenes invasion protein InlB

2010 
The Listeria monocytogenes surface protein InIB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InIB (InlB(321)) is sufficient for Met binding and activation. The complex between this Met-binding domain of InIB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering and small-angle neutron scattering. Although most receptor tyrosine kinase ligands induce receptor dimerization, InlB(321) consistently binds the Met ectodomain with a 1:1 stoichiometry. A construct comprising the Sema and PSI domains of Met, although sufficient to bind the physiological Met ligand hepatocyte growth factor/scatter factor, does not form a complex with InlB(321) in solution, highlighting the importance of Met Ig domains for InIB binding. Small-angle X-ray scattering and small-angle neutron scattering measurements of ligand and receptor, both free and in complex, reveal an elongated shape for the receptor. The four Ig domains form a bent, rather than a fully extended, conformation, and InlB(321) binds to Sema and the first Ig domain of Met, in agreement with the recent crystal structure of a smaller Met fragment in complex with InlB(321), These results call into question whether receptor dimerization is the basic underlying event in InlB(321)-mediated Met activation and demonstrate differences in the mechanisms by which the physiological ligand hepatocyte growth factor/scatter factor and InlB(321) bind and activate the Met receptor. (C) 2008 Elsevier Ltd. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []