Inducible viral inoculation system with cultured plant cells facilitates a biochemical approach for virus-induced RNA silencing.

2010 
An inducible virus infection system was demonstrated to be an efficient protein expression system for inducing synchronous virus vector multiplication in suspension-cultured plant cells. A GFP-tagged tomato mosaic virus (ToMV-GFP) derivative that has a defect in its 130 K protein, a silencing suppressor of ToMV, was synchronously infected to tobacco BY2 cultured cells using this system. In the infection-induced cells, viral RNA was degraded rapidly, and a cytosol extract prepared from the infected cells showed RNA degradation activity specific for ToMV- or GFP-related sequences. In lysate prepared from cells infected by ToMV-GFP carrying the wild-type 130 K protein, sequence-specific RNA degradation activity was suppressed, although siRNA derived from the virus was generated. Furthermore, the 130 K protein interfered with 3′-end methylation of siRNA. The inducible virus infection system may provide a method for biochemical analysis of antiviral RNA silencing and silencing suppression by ToMV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []