The SikCuZnSOD3 gene improves abiotic stress resistance in transgenic cotton

2021 
The expression of a gene encoding peroxisomal Cu-Zn superoxide dismutase from Saussurea involucrata Kar. et Kir. was induced by low temperature, PEG6000 treatment, and NaCl stress. To investigate the role of SikCuZnSOD3 in the mitigation of abiotic stress, we used Agrobacterium-mediated transformation to create transgenic cotton that overexpressed SikCuZnSOD3. Phenotypic analysis of T4 generation transgenic lines showed that they generally grew better than wild-type cotton under low temperature, PEG6000 treatment, and NaCl stress. Although there were no significant differences under control conditions, transgenic plants exhibited greater survival, fresh weight, and dry weight than wild-type plants under all three stress treatments. Additional physiological analyses demonstrated that the transgenic cotton had higher relative water content, proline and soluble sugar contents, and activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), as well as lower relative conductivity, malondialdehyde content, and H2O2 and O2− accumulation. More importantly, overexpression of SikCuZnSOD3 increased the yield of cotton fiber. Our results confirm that the overexpression of SikCuZnSOD3 can improve the abiotic stress resistance of cotton by increasing the activity of antioxidant enzymes, maintaining ROS homeostasis, and reducing cell membrane damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    1
    Citations
    NaN
    KQI
    []