Cellular plasticity and drug resistance in sarcoma.

2020 
Abstract Sarcomas, originating from mesenchymal progenitor stem cells, are a group of rare malignant tumors with poor prognosis. Wide surgical resection, chemotherapy, and radiotherapy are the most common sarcoma treatments. However, sarcomas' response rates to chemotherapy are quite low and sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multi-drug resistance (MDR). Cancer cellular plasticity plays pivotal roles in cancer initiation, progression, therapy resistance and cancer relapse. Moreover, cancer cellular plasticity can be regulated by a multitude of factors, such as genetic and epigenetic alterations, tumor microenvironment (TME) or selective pressure imposed by treatment. Recent studies have demonstrated that cellular plasticity is involved in sarcoma progression and chemoresistance. It's essential to understand the molecular mechanisms of cellular plasticity as well as its roles in sarcoma progression and drug resistance. Therefore, this review focuses on the regulatory mechanisms and pathological roles of these diverse cellular plasticity programs in sarcoma. Additionally, we propose cellular plasticity as novel therapeutic targets to reduce sarcoma drug resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    151
    References
    5
    Citations
    NaN
    KQI
    []