On string languages generated by sequential spiking neural P systems based on the number of spikes

2016 
Spiking neural P systems (SN P systems, for short) are a class of distributed parallel computing devices inspired from the way neurons communicate by means of spikes. In this work, we consider SN P systems with the following restriction: at each step the active neuron with the maximum (or minimum) number of spikes among the neurons that can spike will fire [if there is a tie for the maximum (or minimum) number of spikes stored in the active neurons, only one of the neurons containing the maximum (or minimum) is chosen non-deterministically]. We investigate the computational power of such sequential SN P systems that are used as language generators. We prove that recursively enumerable languages can be characterized as projections of inverse-morphic images of languages generated by such sequential SN P systems. The relationships of the languages generated by these sequential SN P systems with finite and regular languages are also investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    11
    Citations
    NaN
    KQI
    []