language-icon Old Web
English
Sign In

Membrane computing

Membrane computing (or MC) is an area within computer science that seeks to discover new computational models from the study of biological cells, particularly of the cellular membranes. It is a sub-task of creating a cellular model. Membrane computing (or MC) is an area within computer science that seeks to discover new computational models from the study of biological cells, particularly of the cellular membranes. It is a sub-task of creating a cellular model. Membrane computing deals with distributed and parallel computing models, processing multisets of symbol objects in a localized manner. Thus, evolution rules allow for evolving objects to be encapsulated into compartments defined by membranes. The communications between compartments and with the environment play an essential role in the processes. The various types of membrane systems are known as P systems after Gheorghe Păun who first conceived the model in 1998. An essential ingredient of a P system is its membrane structure, which can be a hierarchical arrangement of membranes, as in a cell, or a net of membranes (placed in the nodes of a graph), as in a tissue or a neural net. P systems are often depicted graphically with drawings. The intuition behind the notion of a membrane is a three-dimensional vesicle from biology. However the concept itself is more general, and a membrane is seen as a separator of two regions. The membrane provides for selective communication between the two regions. As per Gheorghe Păun, the separation is of the Euclidean space into a finite “inside” and an infinite “outside”. The selective communication is where the computing comes in.

[ "Membrane", "P system", "Algorithm", "Bioinformatics", "Theoretical computer science", "membrane algorithm", "brane calculi", "turing computability", "Matrix grammar" ]
Parent Topic
Child Topic
    No Parent Topic