Characterization of MgO/Al 2 O 3 Composite Film Prepared by DC Magnetron Sputtering and Its Secondary Electron Emission Properties

2018 
Magnesium oxide (MgO) and MgO/Al2O3 composite thin films were prepared on silver substrates by DC magnetron sputtering technique and their secondary electron yields (δ) and working durability under constant electron bombardment were investigated. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses reveal that uniform MgO/Al2O3 composite films were developed and residual Al exists in the films after sputtering of the Mg-Al alloy in an Ar-O2 mixed atmosphere on silver substrates heated at 400°C. The MgO/Al2O3 composite films show superior δ as high as 11.6 and much better resistance to electron bombardment than that of pure MgO films. Good secondary electron emission (SEE) properties of the MgO/Al2O3 film are probably due to the presence of alumina in the film, which has higher bond dissociation energy than MgO, as well as the presence of residual Al in the film, which contributes to effective electron transport in the film and diminished surface charging during SEE. With superior SEE performance, MgO/Al2O3 films have potential for practical electron multipliers in various vacuum electron devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    6
    Citations
    NaN
    KQI
    []